Dampak Penggunaan Combine Harvester terhadap Kehilangan Hasil Panen Padi di Provinsi Banten
Keywords:
combine harvester, dampak, impact, kehilangan hasil, padi, rice, yield lossesAbstract
English
Combined Harvester (CH) aid is part of the Indonesian government policy instrument for accelerating rice production and increasing farmers’ income. In addition to reducing harvesting cost and time, CH may also reduce harvest loss. This study intends to quantify rice yield loss reduction if CH is used for harvesting. The study was conducted in Banten Province in 2014 using primary data collected from 119 CH user farmers and 116 nonuser farmers selected purposively. Preliminary analysis was conducted using regression which was estimated with the Ordinary Least Square (OLS) method. Since OLS estimated regression is prone to sample selection bias, subsequent analysis is conducted using the Propensity Score Matching (PSM) estimator with a logistic regression. The PSM analysis support the regression analysis that CH reduces harvest loss. Based on the Stratification Matching, it was found that the CH reduces harvest loss by up to 200.39 kg per hectare or around 3.52% of total yield. It is recommended that the Government facilitates provision of technical assistance and training for CH operator farmers or farmers’ groups particularly the first users aid recipients. The harvest reduction advantage is an additional reason for supporting feasibility of CH scaling out policy in Indonesia.
Indonesian
Bantuan Combined Harvester (CH) padi adalah salah satu instrumen kebijakan pemerintah Indonesia untuk mendorong peningkatan produksi dan pendapatan petani padi. Walau manfaat utamanya adalah untuk menghemat ongkos dan mempercepat panen, CH juga dapat mengurangi kehilangan panen. Penelitian ini bertujuan untuk menghitung kuantitas pengurangan kehilangan hasil usaha tani padi jika panen dilakukan dengan CH. Penelitian dilakukan menggunakan data primer dari 119 petani pengguna dan 116 petani nonpengguna CH yang dipilih sengaja di Provinsi Banten pada tahun 2014. Analisis awal dilakukan dengan regresi yang diduga dengan kuadrat terkecil biasa (OLS). Untuk mengatasi potensi bias sampel pada analisis regresi OLS, selanjutnya digunakan penduga Propensity Score Matching (PSM) dengan mempergunakan regresi logistik. Hasil analisis PSM memverifikasi efek positif penggunaan CH terhadap kehilangan hasil berdasarkan analisis regresi OLS. Berdasarkan Stratification Matching didapatkan bahwa penggunan CH dapat menekan kehilangan hasil sebesar 200,39 kg per hektare atau sekitar 3,52% dari total hasil. Disarankan agar pemerintah memfasilitasi pendampingan dan pelatihan teknis kepada petani atau kelompok tani operator, utamanya pengguna pertama penerima bantuan. Manfaat mengurangi kehilangan panen memperkuat kelayakan kebijakan perluasan penggunaan CH di Indonesia.
References
Aldillah R. 2016. Kinerja pemanfaatan mekanisasi pertanian dan implikasinya dalam upaya percepatan produksi pangan di Indonesia. Forum Penel Agro Ekon. 34 (2): 163-177
Amare D, Endalew W. 2016. Agricultural mechanization: assessment of mechanization impact experiences on the rural population and the implications for Ethiopian smallholders. Eng Appl Sci. 1(2): 39-48.
Amrullah ER, Astuti Y, Ishida A. 2017. Farmer's perception of the rice transplanter and combine harvester, case studies in Banten, Indonesia. Proceeding the 1st International Conference on Food Security Innovation 2017. Project Implementation Unit – Islamic Development Bank and University of Sultan Ageng Tirtayasa. p. 82-91.
Amrullah EA, Sholih NH. 2016. Peran dan kontribusi hand tractor terhadap efisiensi usaha tani di Banten. Prosiding Seminar Nasional Inovasi Teknologi Pertanian Banjarbaru. 20 Juli 2016. BPTP Kalimantan Selatan. p. 1584-1590
Angrist JD, Imbens G. 1995. Two-stage least squares estimates of average causal effects in models with variable treatment intensity. J. Am Stat Assoc. 90(430): 431-442
[Balitbangtan] Badan Penelitian dan Pengembangan Pertanian. 2015. Mico harvester solusi panen di lahan sempit dan berlumpur. Warta Penelit Pengemb Pertan. 37 (1): 11-12
Baker, JL. 2000. Evaluating the impact of development projects on poverty. A handbook for practitioners. Washington, DC (US): The World Bank.
Caliendo M, Kopeinig S. 2008. Some practical guidance for the implementation of propensity score matching. J Econ Surv. 22:31-72. Available from: http://dx.doi.org/10.1111/j.1467-6419.2007.00527
Diao X, Silver J, Takeshima H. 2016. Agricultural mechanization and agricultural transformation, background paper for African transformation report 2016: transforming Africa’s agriculture. African Center for Economic Transformation (ACET) and Japan International Cooperation Agency Research institute (JICA-RI) [Internet]. [cited 2018 Jan 4]; Available from: https://www.jica.go.jp/jica-ri/publication/booksandreports/l75nbg0000004aet-att/l75nbg0000004aik.pdf
[FAO] Food and Agriculture Organization. 2014. A regional strategy for sustainable agricultural mechanization: sustainable mechaniza-tion across agri-food chains in Asia and the Pacific region. FAO Regional Office for Asia and the Pacific Publication [Internet]. [cited 2018 Des 1]: Available from:http://www.fao.org/publications/card/en/c/78c1b49f-b5c2-43b5-abdf-e63bb6955f4f/
Ghosh BK. 2010. Determinants of farm mechanisation in modern agriculture: a case study of Burdwan Districts of West Bengal. Int J Agric Res, 5, 1107--1115. https://doi.org/http://scialert.net/abstract/?doi= ijar.2010.1107.1115
Handaka, Prabowo A. 2014. Kebijakan antisipatif pengembangan mekanisasi pertanian. Anal Kebijak Pertan. 11(1):27-44
Heckman JJ, Ichimura H, Todd PE. 1997. Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. Rev Econ Stud. 64(4):605-654.
Idiong IC. 2007. Estimation of farm level technical efficiency in smallscale swamp rice production in Cross River State of Nigeria: A Stochastic Frontier Approach. W J Agric Sci 3(5): 653-658
Imbens G, Wooldridge J. 2009. Recent developments in the econometrics of program evaluation. J Econ Lit, 47(1): 5-86. Available from: http://dx.doi.org/10.1257/jel.47.1.5
Iswari A. 2012. Kesiapan teknologi panen dan pasca panen padi dalam menekan kehilangan hasil dan meningkatkan mutu beras. J Penel Pengemb Pertan 31(2):58-67
Mariano MJ, Villano R, Fleming E. 2012. Factors influencing farmers’ adoption of modern rice technologies and good management practices in the Philippines. Agr Sys, 110, 41–53. https://doi.org/10.1016/j.agsy.2012.03.010
McIntire J, Bourzat D, Pingali P, McIntire J. 1992. Crop - livestock interaction in sub-Saharan Africa (English). World Bank regional and sectoral studies. Washington, DC: The World Bank [Internet]. [cited 2018 Des 4]; Available from http://documents. worldbank.org/curated/en/505681468768678913/Crop-livestock-interaction-in-sub-Saharan-Africa
Mignouna DB, Manyong VM, Rusike J, Mutabazi KDS, Senkondo EM. 2011. Determinants of adopting imazapyr-resistant maize technologies and its impact on household income in Western Kenya. AgBioForum [Internet]. [cited 2018 Oct 7]; 14(3), 158-163. Available from: http://www. agbioforum.org.
Pullaila A. Amrullah ER, Astuti Y, Ishida A. 2018. Factors affecting paddy farmers' perception of utilizing agricultural machines in Indonesia. J Agric Ext Rur Dev. 10(8):150-157
Purwantini TB, Susilowati SH. 2018. Dampak peng-gunaan alat mesin panen terhadap kelembagaan usaha tani padi. Anal Kebijak Pertan. 16(1): 73-88 tersedia di DOI: http://dx.doi.org/10.21082/akp.v16n1.2018.73-88
Rosenbaum P, Rubin DB. 1985. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. Am Stat [Internet]. [cited 2018 No 17]; 39: 33-38. Available from: http://dx.doi.org/10.2307/2683903
Rubin DB. 1977. Assignment to treatment group on the basis of a covariate. J Edu Stat. 2, 1-26. Available from: http://dx.doi.org/10.3102/10769986002001001
Shehu JF, Meshelia, SI. 2007. Productivity and technical efficiency of small-scale rice farmers in Adamawa State, Nigeria. J Agric Soc Sci. 3(4): 117–120
Singh VT, Kumar MR, Viraktamath BC. 2011. Selective mechanization in rice cultivation for energy saving and enhancing the profitability [Internet]. Rajendranagar, Hyderabad (IN): Rice Knowledge Management Portal (RKMP), Directorate of rice research. [cited 2018 Nov 20]; Available from http://www.rkmp.co.in/sites/default/files/ris/research- themes/Selective%20Mechanization%20in%20Rice%20Cultivation%20for%20Energy%20Saving%20and%20Enhancing%20the%20Profitability.pdf
Smith J, Todd P. 2005. Does matching overcome Lalonde’s critique of non-experimental estimators? J Econ. 125: 305-353. Available from: http://dx.doi.org/10.1016/j.jeconom.2004.04.011
Swastika DKS. 2013. Teknologi panen dan pascapanen padi: kendala adopsi dan kebijakan strategi pengembangan. Anal Kebijak Pertan. 11(4):331-348
Verma SR. 2008. Impact of agricultural mechanization on production, productivity, cropping intensity income generation and employment of labour. Status of farm mechanization in India.133-153 [Internet]. [cited 2018 Nov 20]; Available from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.511.5214danrep=rep1dantype=pdf)
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Agro Ekonomi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.