PEMILAHAN VOLATILITAS HARGA DAGING SAPI MENGGUNAKAN METODE ENSEMBLE EMPIRICAL MODE DECOMPOSITION

Authors

  • Fitria Hasanah
  • Hari Wijayanto
  • I Made Sumertajaya

Keywords:

ARIMA, beef price, decomposition, EEMD, forecast, harga daging sapi, peramalan

Abstract

English
Staple food prices include the major determinants of households food security and general inflation. Beef is a basic food which its price is controlled by the Government of Indonesia. This study aims to identify the determinants beef price volatility using the Ensemble Empirical Mode Decomposition (EEMD) method. The data was a weekly series of Januari 2006–Desember 2018 obtained from the Ministry of Trade. EEMD extracts data into a number of Intrinsic Mode Functions (IMFs) that are independent which are then used to forecast beef prices with the ARIMA model. EEMD produced 6 IMFs and one residual. The residual contributed 99.85% to beef price volatility. This means that the long-term trend of beef prices is determined by the residual trends. The EEMD results indicate that the high beef price volatility in certain periods is mainly due to high demand during the Ramadhan month and Idul Fitri, import quota policy, and changes in exchange rates and petroleum prices. The IMF and residual based ARIMA forecasting model obtained MAPE value of 0.42% but with contradicting directions. The Government may use the import quota as a policy instrument for stabilizing the beef price.

Indonesian
Harga pangan pokok termasuk faktor penentu utama ketahanan pangan rumah tangga dan inflasi umum. Daging sapi adalah salah satu bahan pangan pokok yang harganya dikendalikan Pemerintah Indonesia. Penelitian ini bertujuan mengidentifikasi faktor penentu volatilitas harga daging sapi dengan metode Ensemble Empirical Mode Decomposition (EEMD). EEMD menguraikan data menjadi sejumlah Intrinsic Mode Function (IMF) yang saling bebas yang selanjutnya digunakan untuk melakukan peramalan harga daging sapi dengan model ARIMA. Data yang digunakan adalah harga daging sapi mingguan Januari 2006–Desember 2018 yang diperoleh dari Kementerian Perdagangan. EEMD menghasilkan 6 IMF dan satu sisaan. Sisaan IMF memberikan kontribusi sebesar 99,85% terhadap pergerakan harga daging sapi. Artinya bahwa tren jangka panjang harga daging sapi ditentukan oleh tren sisaan. Berdasarkan hasil EEMD, volatilitas harga daging sapi yang tinggi pada periode-periode tertentu dipengaruhi oleh beberapa faktor terutama tingginya permintaan selama bulan Ramadhan dan Idul Fitri dan kebijakan kuota impor, serta perubahan nilai tukar rupiah dan harga BBM. Model peramalan ARIMA yang diduga berdasarkan IMF dan sisaan IMF menghasilkan nilai MAPE sebesar 0,42%, namun arah perubahannya tidak bersesuaian. Disarankan agar pemerintah menggunakan kuota impor sebagai salah satu instrumen kebijakan stabilisasi harga daging sapi.

Author Biographies

Fitria Hasanah

Badan Pusat Statistik
Jln. Dr. Sutomo 6-8, Jakarta,  Indonesia, 10710

Hari Wijayanto

Departemen Statistika, Institut Pertanian Bogor
Jln. Meranti Wing 22 Level 4, Dramaga, Bogor, Jawa Barat , Indonesia, 16680

I Made Sumertajaya

Departemen Statistika, Institut Pertanian Bogor
Jln. Meranti Wing 22 Level 4, Dramaga, Bogor, Jawa Barat , Indonesia, 16680

References

Bantolo. 2020. ISPI desak pemerintah tinjau ulang impor daging kerbau India [Internet]. [diunduh 2020 Feb 9]. Tersedia dari: https://www.agrofarm.co.id/2020/01/21301/

Burhani FJ, Fariyanti A, Jahroh S. 2013. Analisis volatilitas harga daging sapi potong dan daging ayam broiler di Indonesia. Forum Agribisnis. 3(2).

Dewi I, Nurmalina R, Adhi AK, Brümmer B. 2017. Price volatility analysis in Indonesian beef market. KnE Life Sciences [Internet]. [cited 2018 Ags 27]; 2(6):403-420. Available from: https://knepublishing.com/index.php/Kne-Life/article/view/1060/2798#info.

[Ditjennak] Direktorat Jenderal Peternakan dan Kesehatan Hewan. 2018a. Statistik peternakan. Jakarta (ID): Kementerian Pertanian.

[Ditjennak] Direktorat Jenderal Peternakan dan Kesehatan Hewan. 2018b. Laporan tahunan 2018. Jakarta (ID): Kementerian Pertanian.

Fransiska H, Wijayanto H, Sartono B. 2014. Ensemble decomposition method for predicting the price of rice in Jakarta. IOSR J Math [Internet]. [cited 2018 Des 19]; 10(4):92-97. Available from: http://www.iosrjournals.org/iosr-jm/papers/Vol10-issue4/Version-1/N010419297.pdf

Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. 1998. The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis. Proc Roy Soc Lond [Internet]. [cited 2019 Feb 26]; A(454):903–995. Available from: https://royalsociety publishing.org/doi/10.1098/rspa.1998.0193

Ilham N. 2001. Analisis penawaran dan permintaan daging sapi di Indonesia. Seminar Nasional Teknologi Peternakan dan Veteriner.

Indraini A. 2019. Fakta soal harga daging kerbau India tembus Rp 120.000/kg [Internet]. [diunduh 2020 Feb 9]. Tersedia dari https://finance.detik.com/berita-ekonomi-bisnis/d-4722292/fakta-soal-harga-daging-kerbau-india-tembus-rp-120000kg.

[Kemendag] Kementerian Perdagangan. 2014. Upaya stabilisasi harga daging sapi. Jakarta (ID): Kementerian Perdagangan.

Komalawati, Winandi R, Nurmalina R, Hakim DB. 2018. Dampak volatilitas harga daging sapi terhadap industri pengolahan daging sapi di Indonesia. J Pangan [Internet]. [diunduh 2019 Okt 2]; 27(1):9-22. Tersedia dari: http://www.jurnalpangan.com/index.php/pangan/article/view/402

Kusriatmi, Oktaviani R, Syaukat Y, Said A. 2014. Analysis of the effects of beef import restrictions policy on beef self-sufficiency in Indonesia. J ISSAAS [Internet]. [cited 2018 Jul 30]; 20(1):115-130. Available from: https://pdfs.semanticscholar.org/4578/98017611c132153f6254f3abb141a55962ca.pdf

Priyanti A, Inounu I. 2016. Perilaku harga produk peternakan pada hari besar keagamaan nasional. Anal Kebijak Pertan [Internet]. [diunduh 2019 Feb 12]; 14(2):149-162. Tersedia dari: http://ejurnal.litbang.pertanian.go.id/index.php/akp/article/view/8182

Wang L, Duan W, Qu D, Wang S. 2017. What matters for global food price volatility?. Empir Econ Springer [Internet]. [cited 2019 Nov 1]; 54:1549–1572. Available from: https://doi.org/10.1007/s00181-017-1311-9

Wu Z, Huang NE. 2004. A study of the characteristics of white noise using the empirical mode decomposition method. Proc R Soc Lond [Internet]. [cited 2019 Jan 1]; 460(2046):1597-1611. Available from: https://royalsocietypublishing.org/doi/10.1098/rspa.2003.1221

Zhang X, Lai K, K, Wang SY. 2008. A new approach for crude oil price analysis based on empirical mode decomposition. Energy Econ [Internet]. [cited 2019 Jan 1]; 30(3): 905-918. Available from: https:// www.researchgate.net/publication/223861642_A_

new_approach_for_crude_oil_price_analysis_based_on_Empirical_Mode_Decomposition

Downloads

Published

01-02-2024