DETERMINATION OF CRITICAL PRODUCTIVITY LEVEL ON CLUSTER-BASED AREA OF RICE CROP INSURANCE IN JAVA
Keywords:
asuransi usaha tani padi, cluster-based area yield index, indeks produktivitas berbasis klaster, productivity, produktivitas, rice crop insuranceAbstract
Indonesian
Kesenjangan tingkat produktivitas padi di Indonesia cukup besar yang di antaranya dipengaruhi oleh luasnya wilayah pertanaman. Hal ini berdampak pada desain dan penerapan model Asuransi Usaha Tani Padi (AUTP) berbasis produktivitas. Perluasan klaster pada tingkat provinsi diperkirakan dapat mengurangi keragaman produktivitas di tingkat wilayah kota/kabupaten sebagai risiko dasar pemanfaatan skema AUTP berbasis klaster. Klaster, sebagai wilayah atau zona, diperlukan untuk menentukan indeks kritis produktivitas yang akurat dalam rangka penghitungan tingkat premi yang tepat. Kajian ini bertujuan untuk menentukan tingkat produktivitas kritis pada lahan padi yang menerapkan skema AUTP. Kajian ini menggunakan analisis statistik dengan pendekatan batas bawah Two Sigma yang dapat dianggap sebagai batas produktivitas kritis untuk setiap klaster. Teknik ini memberikan persentase yang rendah atas klaim yang terjadi, serta ekspektasi dan simpangan baku dari risiko dasar kerugian. Tarif premi murni yang diperoleh adalah Rp85.191,18, hampir 2,5 kali lipat lebih kecil dibandingkan dengan menggunakan teknik lain sebagai batas poduktivitas. Hasil kajian ini mengungkapkan bahwa penggunaan skema berbasis klaster lebih baik dari skema berbasis provinsi, sebagaimana ditunjukkan oleh nilai TVaR. Kajian ini menyarankan agar Kementerian Pertanian dapat merancang model AUTP berbasis produktivitas berdasarkan klaster dengan setiap klaster memiliki nilai indeks produktivitas kritis yang berbeda untuk menetapkan tingkat premi yang dikenakan.
English
There is a large gap in productivity of paddy in Indonesia which is, among others affected by the area size of crop planting. This condition should influence the design and application model of the rice crop insurance scheme. Developing clusters under the province level is recommended to reduce the heterogeneous productivity as basis risk within regencies/municipalities in improving the area yield index of crop insurance policy in Indonesia. Clusters, as the zone, are necessary to determine accurate critical yield index leading to a more precise premium rate making. This study aims to determine critical productivity level on rice crop insurance area. This study applied statistical analysis using the lower bound of Two Sigma as a critical yield for each cluster. This technique provides a small percentage of claim, and the expectation and standard deviation of basis risk loss. The pure premium rate obtained from the analysis is IDR85,191.18, that is almost 2.5 times less than using other methods as trigger productivity. The analysis result emphasized that the use of the cluster-based scheme is better than the province-based as shown by TVaR value. The study suggests that the Ministry of Agriculture could design the area yield index based on clusters as each cluster will have a different critical productivity index with adjusted premium rate value.
References
Ahdika A, Rosadi D, Effendie AR, Gunardi. 2020. Household margin insurance of agriculture sector in Indonesia using a farmer exchange rate index. Agricultural Finance Review. DOI: 10.1108/AFR-11-2019-0117.
Binswanger-Mkhize HP. 2012. Is there too much hype about index-based agricultural insurance? J of Develop Studies. 48(2): 187-200. DOI: 10.1080/00220388.2011.625411
Boshkovska NJ. 2018. Area yield index insurance: experiences and challenges. In: Understanding Risk Balkans Conference. 2018 Sept 17-19; Belgrade, Serbia.
Boyd M, Porth B, Porth L, Turenne D. 2019. The impact of spatial interpolation techniques on spatial basis risk for weather insurance: an application to forage crops. North Am Actuarial J. 23(3): 412-433. DOI: 10.1080/10920277.2019.1566074
Bunyasiri IN, Sirisupluxana P. 2018. The possibility of implementing the area yield index rice insurance product in Thailand. No 276157. SCC-76 Meeting, 2018, April 5-7, Kansas City, Missouri, SCC-76: Economics and Management of Risk in Agriculture and Natural Resources. https:/ econpapers.repec.org/paper/agsscc018/276157.htm. [accessed at November 22, 2020, 17.55]
Direktorat Pembiayaan Pertanian. 2020. Target dan realisasi AUTP dan AUTS/K. Jakarta (ID): Direktorat Pembiayaan Pertanian, Direktorat Jenderal Prasarana dan Sarana Pertanian, Kementerian Pertanian. (Unpublished).
Direktorat Pembiayaan Pertanian. 2021. Target dan realisasi AUTP dan AUTS/K. Jakarta (ID): Direktorat Pembiayaan Pertanian, Direktorat Jenderal Prasarana dan Sarana Pertanian, Kementerian Pertanian. (Unpublished).
Eichner T, Wagener A. 2014. Insurance demand and first-order risk increases under (µ,σ)-preferences revisited. Finance Research Letters. 11(4): 326-331. DOI: 10.1016/j.frl.2014.06.003
[FAO] Food and Agriculture Organization of the United Nations. 2015. The impact of disasters on agriculture and food security. Rome (IT): Food and Agriculture Organization of the United Nations.
Garcia D, Tsur M. 2020. Information design in competitive insurance markets. J Econ Theory. DOI: 10.1016/j.jet.2020.105160
Gaurav S, Chaudhary V. 2020. Do farmers care about basis risk? Evidence from a field experiment in India. Climate Risk Management. https://doi.org/10.1016/j.crm.2019.100201
Handoko FI. 2016. Determining area yield crop insurance premium using Linear Additive Model [Undergraduate Theses]. [Yogyakarta (ID)]: Universitas Gadjah Mada.
Haryastuti R, Aidi MN, Pasaribu SM, Sumertajaya IM, Sutomo VA, Kusumaningrum D, Anisa R. 2021. Cluster based area yield scheme for crop insurance policy in Java. J Physics: Conference Series. 1821 (2021) 012005. DOI: 10.1088/1742-6596/1821/1/012005.
Klugman SA, Panjer HH, Willmot GE. 2012. Loss models: from data to decisions. 4th ed. New Jersey (US): John Wiley & Sons, Inc. 19-46.
Kusumaningrum D, Anisa R, Sutomo VA, Tan KS. Forthcoming. alternative area yield index based crop policies in Indonesia. Paper presented on the 9th International Conference on Mathematical and Statistical Methods for Actuarial Science and Finance (MAF 2020).
Liesivaara P, Myyra S. 2014. Willingness to pay for agricultural crop insurance in the northern EU. Agric Fin Rev. 74(4):539-554. DOI: 10.1108/AFR-06-2014-0018.
Lyu K, Barre TJ. 2017. Risk aversion in crop insurance program purchase decisions evidence from maize production areas in China. China Agric Econ Rev. 9(1):62-80. DOI: 10.1108/CAER-04-2015-0036.
[MoA] Ministry of Agriculture. 2007. Guidelines for farmer institution development. Regulation of the Ministry of Agriculture. 273/Kpts/OT.160/4/2007. Jakarta (ID): Ministry of Agriculture.
Montgomery DC. 2009. Introduction to statistical quality control. 6th ed. New Jersey (US): John Wiley & Sons, Inc. 180-190.
Munthe AD, Sumertajaya IM, Syafitri UD. 2018. Penggerombolan desa/kelurahan berdasarkan indikator kemiskinan dengan menerapkan algoritma TSC dan K-Prototypes. Indones J Stat and Its App. 2(2). DOI: 10.29244/ijsa.v2i2.169
Nicholson D, Vanli OA, Jung S, Ozguven EE. 2019. A spatial regression and clustering method for developing place-specific social vulnerability indices using census and social media data. Int J of Disaster Risk Reduction. 38 (2019) 101224. DOI: 10.1016/j.ijdrr.2019.101224.
Pasaribu SM, Anugrah IS, Perdana RP. 2020. penerapan asuransi pertanian pada era pandemi Covid-19. In Suryana A, Rusastra IW, Sudaryanto T, Pasaribu SM (Eds.): Dampak pandemi Covid-19: perspektif adaptasi dan resiliensi sosial ekonomi pertanian. Bogor (ID): IAARD Press. p 921-940.
Pasaribu SM, Sudiyanto A. 2016. Agricultural risk management: lesson learned from the application of rice crop insurance in Indonesia. In: Kaneko S, Kawanishi M, editors. Climate Change Policies and Challenges in Indonesia. Tokyo (JP): Springer. p 305-322. DOI: 10.1007/9784-431-55994-8_14.
Rao KN. 2010. Index based crop insurance. In: Agriculture and Agricultural Science Procedia 1. International Conference on Agricultural Risk and Food Security 2010. Elsevier B.V. 1: 193-203. DOI: 10.1016/j.aaspro.2010.09.024.
Rockafellar RT, Uryasev S. 2000. Optimization of conditional value-at-risk. J of Risk. 2(3): 21-41. DOI: 10.21314/JOR.2000.038.
Sahinler S, Topuz D. 2007. Bootstrap and Jackknife resampling algorithms for estimation of regression parameters. J Applied Quantitative Methods. 2(2): 188-199. DOI: 10.13140/RG.2.1.1558.1520.
Sutomo VA, Kusumaningrum D, Anisa R, Paramita A. 2019. A bootstrap simulation for comparison of group risk plan and multi-peril crop insurance policy. J Physics: Conference Series. 1366 (2019) 012075. DOI: 10.1088/1742-6596/1366/1/012075.
Wang M, Ye T, Shi P. 2015. Factors affecting farmers crop insurance participation in China. Can J Agric Econ. 64(3):479-492. DOI: 10.1111/cjag.12088.
Wang E, Yu Y, Little BB, Zouzhi L. 2010. Crop insurance premium design based on survival analysis. In: Agriculture and Agricultural Science Procedia 1. International Conference on Agricultural Risk and Food Security 2010. Elsevier B.V. 1: 67-75. DOI: 10.1016/j.aaspro.2010.09.009.
Wang HH. 2000. Zone-based group risk insurance. J Agri and Res Econ. 25(2): 411-431. DOI: 10.22004/ag.econ.30904.
Wang HH, Zhang H. 2003. On the possibility of a private crop insurance market: a spatial statistics approach. J Risk and Insurance. 70(1). DOI: 10.1111/1539-6975.00051.
Ye T, Hu W, Barnett BJ, Wang J, Gao Y. 2019. Area yield index insurance or farm yield crop insurance? Chinese perspective on farmers’ welfare and government subsidy effectiveness. J Agric Econ. 71(1). DOI: 10.1111/1477-9552.12326.
Zhou X, Zhang H, Fan Q. 2015. Optimal limited stop-loss reinsurance under VaR, TVaR, and CTE risk measures. Mathematical Problem in Engineering. 2015: 12 pp. DOI: 10.1155/2015/143739.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Agro Ekonomi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.