Alelopati Gulma: Pelepasan Alelokimia dan Kerugiannya terhadap Tanaman Budidaya

Authors

  • Bayu Widhayasa

DOI:

https://doi.org/10.51589/ags.v7i1.3403

Keywords:

Alelokimia, Hasil panen, Pertumbuhan, Perkembangan, Penghambatan

Abstract

Gulma adalah kelompok tumbuhan yang berasosiasi dengan tanaman budidaya dan mengakibatkan kerugian ekonomi. Gulma mengganggu tanaman karena terjadinya persaingan dan alelopati. Ulasan ini bertujuan untuk menjelaskan potensi gulma yang mengandung alelokimia, cara pelepasan alelokimia dan dampak merugikannya terhadap perkecambahan, pertumbuhan, perkembangan, perubahan dalam proses fisiologis dan hasil panen tanaman. Data dihimpun melalui penelusuran repositori jurnal digital, kemudian dilakukan analisis secara deskriptif. Metabolit sekunder yang dihasilkan oleh gulma dikenal sebagai alelokimia, meliputi fenolik, alkaloid, asam lemak, indol, terpenoid, dan lain-lain. Namun, fenolik adalah kelas alelokimia yang dominan. Mekanisme pelepasan alelokimia dari gulma terjadi melalui pencucian dari daun atau bagian tanaman lainnya, dekomposisi sisa tanaman, penguapan dan eksudasi akar. Gulma meninggalkan residunya dalam jumlah besar di lapangan dan berdampak terhadap tanaman budidaya. Pelepasan alelokimia dari gulma menghambat perkecambahan benih, pembentukan tunas, pertumbuhan dan perkembangan tanaman, serta menurunkan hasil panen. Pada intinya, alelopati gulma merupakan ancaman potensial bagi tanaman budidaya dan menyebabkan kerugian ekonomi.

References

Abbas iT, iMA-Nadeem, iA-Tanveer idan iA-Zohaib. i-2015. i-Comparative-influence-of-water-soluble-phenolics-of-warm-climate-aquatic-weeds-on-weeds-species-composition-and-rice-wheat-cropping-system. iScientia-Agriculturae. i10(3). ihttps://doi.org/10.15192/pscp.sa.2015.10.3.145150

Ali-HH, iA-Tanveer, iM-Naeem, iM-Jamil, iM-Iqbal, iAR-Chadhar-dan-MS-Kashif. i-2015. i-Assessing-the-competitive-ability-of iRhynchosia-capitata: i-An-emerging-summer-weed-in-Asia. i-Planta-Daninha. i33(2): i175–182. ihttps://doi.org/10.1590/0100-83582015000200002

Amb iMK idan iAS iAhluwalia. i2016. iAllelopathy: iPotential irole ito iachieve inew imilestones iin irice icultivation. iRice iScience. i23(4): i165–183. ihttps://doi.org/10.1016/j.rsci.2016.06.001

Bachheti iA, iA iSharma, iRK iBachheti idan iDP iPandey. i2020. i iPlant iallelochemicals iand itheir ivarious iapplications. iRef. iSer. iin iPhytochemistry. iMarch: i441–465. ihttps://doi.org/10.1007/978-3-319-96397-6_14

Baky iMH, iMR iElgindi, iEM iShawky idan iHA iIbrahim. i2022. iPhytochemical iinvestigation iof iLudwigia iadscendens isubsp. idiffusa iaerial iparts iin icontext iof iits ibiological iactivity. iBMC iChemistry. i16(1): i1–9. ihttps://doi.org/10.1186/s13065-022-00909-8

Bertini iL, iS iProietti, iF iFocaracci, iB iSabatini idan iC iCaruso. i2018. iEpigenetic icontrol iof idefense igenes ifollowing iMeJA-induced ipriming iin irice i(O. isativa). iJ. iof iPlant iPhysiology. i228(December i2017): i166–177. ihttps://doi.org/10.1016/j.jplph.2018.06.007

Brilli iF, iTM iRuuskanen, iR iSchnitzhofer, iM iMüller, iM iBreitenlechner, iV iBittner, iG iWohlfahrt, iF iLoreto idan iA iHansel. i2011. iDetection iof iplant ivolatiles iafter ileaf iwounding iand idarkening iby iproton itransfer ireaction i'time-of-flight' imass ispectrometry i(ptr-tof). iPlos iOne, i6(5). ihttps://doi.org/10.1371/journal.pone.0020419

Chauhan iBS. i2020. iGrand ichallenges iin iweed imanagement. iFrontiers iin iAgronomy. i1(January): i1–4. ihttps://doi.org/10.3389/fagro.2019.00003

Cheng iF idan iZ iCheng. i2015. iResearch iprogress ion ithe iuse iof iplant iallelopathy iin iagriculture iand ithe iphysiological iand iecological imechanisms iof iallelopathy. iFrontiers iin iPlant iScience. i6(November): i1–16. ihttps://doi.org/10.3389/fpls.2015.01020

De iAlbuquerque iMB, iRC iDos iSantos, iLM iLima, iPDA iMelo-Filho, iRJMC iNogueira, iCAG iDa iCâmara idan iADR iRamos. i2011. iAllelopathy: iAn ialternative itool ito iimprove icropping isystems. iA ireview. iAgron. ifor iSustain. iDev., i31(2): i379–395. ihttps://doi.org/10.1051/agro/2010031

Eo iI idan iO iJo. i2017. iWeed iinfestation, igrowth iand iyield iof imaize i(Zea imays iL.) ias iinfluenced iby iperiods iof iweed iinterference. iAdv. iin iCrop iSci. iand iTech. i05(02). ihttps://doi.org/10.4172/2329-8863.1000267

Ettebong iEO, iPM iUbulom idan iD iObot. i2020. iA isystematic ireview ion iEleucine iindica i(L.) iGaertn: iFrom iethnomedicinal iuses ito ipharmacological iactivities. iJ. iof iMed. iPlants iStudies. i8(4): i262–274

Farooq iM, iA iNawaz, iSA iCheema idan iZA iCheema. i2014. iRole iof iallelopathy iin iweed imanagement: iA ireview. iRec. iAdv. iin iWeed iManag., i41(4): i39–61. ihttps://doi.org/10.1007/978-1-4939-1019-9_3

Flessner iML, iIC iBurke, iJA iDille, iWJ iEverman, iMJ iVangessel, iB iTidemann, iMR iManuchehri, iN iSoltani idan iPH iSikkema. i2021. iPotential iwheat iyield iloss idue ito iweeds iin ithe iUnited iStates iand iCanada. iWeed iTechnology, i35(6): i916–923. ihttps://doi.org/10.1017/wet.2021.78

Garduque iDAP, iKRG iMateo, iSMA iOyinloye, iJA iLucero idan iL iKristine. i2019. iAntimicrobial iefficacy iof icarabao igrass i(Paspalum iconjugatum) ileaves ion iStaphylococcus iaureus. iAbst. iProceed. iIntl. iSch. iConf. i7(1): i384–397. ihttps://doi.org/10.35974/isc.v7i1.1035

Hagan iDL, iS iJose idan iCH iLin. i2013. iAllelopathic iexudates iof icogongrass i(Imperata icylindrica): iImplications ifor ithe iperformance iof inative ipine isavanna iplant ispecies iin ithe iSoutheastern iUS. iJ. iof iChem. iEco. i39(2): i312–322. ihttps://doi.org/10.1007/s10886-013-0241-z

He iHB, iHB iWang, iCX iFang, iZH iLin, iZM iYu idan iWX iLin. i2012. iSeparation iof iallelopathy ifrom iresource icompetition iusing irice/barnyardgrass imixed-cultures. iPlos iOne. i7(5): i1–6. ihttps://doi.org/10.1371/journal.pone.0037201

Hussain iF, iI iIlahi, iSA iMalik, iAA iDasti idan iB iAhmad. i2011. iAllelopathic ieffects iof irain ileachates iand iroot iexudates iof iCenchrus iciliaris iL. iand iBothriochloa ipertusa i(L.) iA. iCamus. iPakistan iJ. iof iBotany. i43(1). i341–350.

Islam iAKMM, iM iNasir, iMA iMou, iS iYeasmin, iMS iIslam, iS iAhmed, iMP iAnwar, iA iHadifa, iA iBaazeem, iMA iIqbal, iAS iJuraimi idan iAEL iSabagh. i2021. iPreliminary ireports ion icomparative iweed icompetitiveness iof iBangladeshi imonsoon iand iwinter irice ivarieties iunder ipuddled itransplanted iconditions. iSustainability. i13(5091). ihttps://doi.org/10.3390/su13095091

Jabran iK, iG iMahajan, iV iSardana idan iBS iChauhan. i2015. iAllelopathy ifor iweed icontrol iin iagricultural isystems. iCrop iProtection. i72. i57–65. ihttps://doi.org/10.1016/j.cropro.2015.03.004

Jhade iD, iD iAhirwar, iR iJain, iNK iSharma idan iS iGupta. i2011. iPharmacognostic istandardization, iphysico-and iphytochemical ievaluation iof iAmaranthus ispinosus iLinn. iroot. iJ. iof iYoung iPharmacists. i3(3): i221–225. ihttps://doi.org/10.4103/0975-1483.83770

Kanupriya iKM, iA iSharma, idan iA iDhiman. i2021. iMedicinal ipotential iof iDigitaria: iAn ioverview. iJ. iof iPharmacognosy iand iPhytochemistry. i10(1): i1717–1719. iwww.phytojournal.com

Kato-Noguchi iH. i2022. iAllelopathy iand iallelochemicals iof iImperata icylindrica ias ian iinvasive iplant ispecies. iPlants. i11(19): i11–14. ihttps://doi.org/10.3390/plants11192551

Katoch iR, iA iSingh idan iN iThakur. i2012. iEffect iof iweed iresidues ion ithe iphysiology iof icommon icereal icrops. iIntl. iJ. iof iEng. iRes. iand iAppl. i2(5): i828–834.

Ketut iAdiputra iIG. i2022. iThe ieffect iof iaccumulation iof ileaf ilitters iand iallelochemicals iin ithe isoil ito ithe isustainability iof ithe inewly iintroduced icrop iplants. iJ. iof iTrop. iBiodiv. iand iBiotech. i7(1). ihttps://doi.org/10.22146/jtbb.65227

Khamare iY, iJ iChen idan iSC iMarble. i2022. iAllelopathy iand iits iapplication ias ia iweed imanagement itool: iA ireview. iFrontiers iin iPlant iScience, i13(November): i1–17. ihttps://doi.org/10.3389/fpls.2022.1034649

Khanh iTD, iLH iLinh, iTH iLinh, iNT iQuan, iDM iCuong, iVTT iHien, iLH iHam idan iTD iXu. i2013. iIntegration iof iallelopathy ito icontrol iweeds iin irice. iHerbicides-Current iResearch iand iCase iStudies iin iUse. iJune. ihttps://doi.org/10.5772/56035

Khanh iTD, iKH iTrung, iLH iAnh idan iTD iXuan. i2019. iAllelopathy iof ibarnyardgrass i(Echinochloa icrus-galli) iweed: iAn iallelopathic iinteraction iwith irice i(Oryza isativa). iViet. iJ. iof iAgr. iSc. i1(January): i97–116.

Kumar iA, iS iSreedharan, iAK iKashyap, iP iSingh idan i iN iRamchiary. i2022. iA ireview ion ibioactive iphytochemicals iand iethnopharmacological ipotential iof ipurslane i(Portulaca ioleracea iL.). iHeliyon. i8(1). ihttps://doi.org/10.1016/j.heliyon.2021.e08669

Lalbiak iLF idan iH iLalruatsan. i2022. iAllelopathic ieffect iof icommon iweeds ion igermination iand iseedlingrowth iof irice iin iwetland ipaddy ifields iof iMizoram, iIndia. iPlant, iSoil iand iEnvironment. i68(8): i393–400. ihttps://doi.org/10.17221/167/2022-PSE

Laxman iDU, iNM iDesai idan iGD iKrishna. i2019. iAllelopathic ipotentials iof iChromolaena iodorata iL. ion igrowth iand ibiochemical icharacteristics iof iSalvadora ipersica. iAsian iJ. iof iBiol. iSc. i12(2): i122–129. ihttps://doi.org/10.3923/ajbs.2019.122.129

Li iZH, iQ iWang, iX iRuan, iCD iPan idan iDA iJiang. i2010. iPhenolics iand iplant iallelopathy. iMolecules. i15(12): i8933–8952. ihttps://doi.org/10.3390/molecules15128933

Ma iY, iM iZhang, iY iLi, iJ iShui idan iY iZhou. i2014. iAllelopathy iof irice i(Oryza isativa iL.) iroot iexudates iand iits irelations iwith iOrobanche icumana iWallr. iand iOrobanche iminor iSm. igermination. iJ. iof iPlant iInteract. i9(1): i722–730. ihttps://doi.org/10.1080/17429145.2014.912358

Madhan iSR, iS iVeeralakshmi, iAR iSirajunnisa idan iR iRajendran. i2014. i iEffect iof iallelochemicals ifrom ileaf ileachates iof iGmelina iarborea ion iinhibition iof isome iessential iseed igermination ienzymes iin igreen igram, ired igram, iblack igram, iand ichickpea. iIntl. iSch. iRes. iNot. i2014: i1–7. ihttps://doi.org/10.1155/2014/108682

Mahmoud iS. i2016. iAllelopathic ipotential iof ifive iweed iextracts ion iPortulaca ioleracea iL. iand iSetaria iglauca iL. iBeauv. iJ. iof iPlant iProt. iand iPat. i7(5): i321–325. ihttps://doi.org/10.21608/jppp.2016.50562

Majeed iA, iZ iChaudhry idan iZ iMuhammad. i2012. iAllelopathic iassessment iof ifresh iaqueous iextracts iof iChenopodium iAlbum iL. ifor igrowth iand iyield iof iwheat i(Triticum iAestivum iL.). iPak. iJ. iof iBot. i44(1): i165–167.

Malarvizhi iD, iAVP iKarthikeyan, iI iSudan idan iR iSatheeshkumar. i2019. iPhytochemical ianalysis iof iCommelina idiffusa iBurm. iF. ithrough iGC-MS imethod. iJ. iof iPhar. iand iPhytochem. i8(1): i376–379.

Mohadesi iA, iA iAbbasian, iS iBakhshipour, iF iTavasoli, iMM iSalehi idan iA iMadani. i2011. iAllelopathy iof iweed iextracts ion iyield iand iits icomponents iin ifour icultivars iof irice i(Oryza isativa iL.). iJ. iof iCent. iEur. iAgr. i12(1): i70–81. ihttps://doi.org/10.5513/JCEA01/12.1.881

Mozafari iAA, iY iVafaee idan iM iShahyad. i2018. iPhytochemical icomposition iand iin ivitro iantioxidant ipotential iof iCynodon idactylon ileaf iand irhizome iextracts ias iaffected iby idrying imethods iand itemperatures. iJ. iof iFood iSci. iand iTech. i55(6): i2220–2229. ihttps://doi.org/10.1007/s13197-018-3139-5

Muhammad iI, iA iShalmani, iM iAli, iQH iYang, iH iAhmad idan iFB iLi. i2021. iMechanisms iregulating ithe idynamics iof iphotosynthesis iunder iabiotic istresses. iFrontiers iin iPlant iScience. i11(January): i1–25. ihttps://doi.org/10.3389/fpls.2020.615942

Muzaffar iS, iB iAli idan iN iWani. i2012. iEffect iof icatechol, igallic iacid, iand ipyrogallic iacid ion ithe igermination, iseedling igrowth, iand ithe ilevel iof iendogenous iphenolics. iIntl. iJ. iof iLife iSci. iBiotech. iand iPhar. iRes. i1(May i2012): i50–55.

Nandi iMVP, iHasanuddin idan iS iHafsah. i2020. iPhytochemical itest ifraction iN-hexane iallelopathy igoat iweed iextracts i(Ageratum iconyzoides iL.) ion ithe igrowth iof ithorn ispinach i(Amarantus ispinosus iL.). iIOP iConf. iSer: iEarth iand iEnvir. iSci. i425(1): i0–8. ihttps://doi.org/10.1088/1755-1315/425/1/012039

Narayanan iJ idan iS iJeeva. i2012. iPhytochemical ianalysis ion iAsystasia igangetica i(L.). iJ. iOf iHar. iRes. i(JOHR). i1(1): i19–32.

Nasrin iM, iF iAfroz, iS iSharmin, iMS iRana idan iMH iSohrab. i2019. iCytotoxic, iantimicrobial iand iantioxidant iproperties iof iCommelina idiffusa iBurm. iPharmacology i& iPharmacy. i10(02): i82–93. ihttps://doi.org/10.4236/pp.2019.102007

Negi iB, iS iBargali, iK iBargali idan iK iKhatri. i2020. iAllelopathic iinterference iof iAgeratum iconyzoides iL. iagainst irice ivarieties. iCurr. iAgr. iRes. iJ. i8(2): i69–76. ihttps://doi.org/10.12944/carj.8.2.01

Ngoc iQN idan iTN iMinh. i2021. i iCyperus irotundus i(Cyperaceae): iA istudy iof iphytochemistry, itotal ipolyphenol icontent, iflavonoid icontent, iand iantioxidant iactivity. iE3S iWeb iof iConferences. i332. i06003. ihttps://doi.org/10.1051/e3sconf/202133206003

Ramli iNW, iWZWM iZain, iMZA iWahab, iN iHamid, iNA iAbdullah idan iN iZamanhuri. i2022. iPhytochemical iscreening, iantioxidant iand iantifungal iactivity iof imethanolic iextract iof iFimbristylis idichotoma iand iFimbristylis imiliacea. iIOP iConf. iSer.: iEarth iand iEnvir. iSci. i1059(1). ihttps://doi.org/10.1088/1755-1315/1059/1/012080

Riedlmeier iM, iA iGhirardo, iM iWenig, iC iKnappe, iK iKoch, iE iGeorgii, iS iDey, iJE iParker, iJP iSchnitzler idan iAC iVlot. i2017. iMonoterpenes isupport isystemic iacquired iresistance iwithin iand ibetween iplants. iPlant iCell, i29(6): i1440–1459. ihttps://doi.org/10.1105/tpc.16.00898

Rizwan iK, iI iMajeed, iM iBilal, iT iRasheed, iA iShakeel idan iS iIqbal. i2022. iPhytochemistry iand idiverse ipharmacology iof igenus iMimosa: iA iReview. iBiomolecules. i12(1): i1–31. ihttps://doi.org/10.3390/biom12010083

Sangeetha iC idan iP iBaskar. i2015. iAllelopathy iin iweed imanagement: iA icritical ireview. iAfr. iJ. iof iAgr. iRes. i10(9): i1004–1015. ihttps://doi.org/10.5897/ajar2013.8434

Sarker iU idan iS iOba. i2019. iNutraceuticals, iantioxidant ipigments, iand iphytochemicals iin ithe ileaves iof iAmaranthus ispinosus iand iAmaranthus iviridis iweedy ispecies. iScientific iReports. i9(1): i1–10. ihttps://doi.org/10.1038/s41598-019-50977-5

Savadi iS, iM iVazifedoost, iZ iDidar, iMM iNematshahi idan iE iJahed. i2020. iPhytochemical ianalysis iand iantimicrobial/antioxidant iactivity iof iCynodon idactylon i(L.) iPers. irhizome imethanolic iextract. iJ. iof iFood iQuality. i2020. ihttps://doi.org/10.1155/2020/5946541

Scavo iA, iC iAbbate idan iG iMauromicale. i2019. iPlant iallelochemicals: iagronomic, inutritional iand iecological irelevance iin ithe isoil isystem. iPlant iand iSoil. i442(1–2): i23–48. ihttps://doi.org/10.1007/s11104-019-04190-y

Scavo iA idan iG iMauromicale. i2021. iCrop iallelopathy ifor isustainable iweed imanagement iin iagroecosystems: iKnowing ithe ipresent iwith ia iview ito ithe ifuture. iAgronomy. i11(11). ihttps://doi.org/10.3390/agronomy11112104

Sekine iT, iKS iAppiah, iM iAzizi idan iY iFujii. i2020. iPlant igrowth iinhibitory iactivities iand ivolatile iactive icompounds iof i53 ispices iand iherbs. iPlants. i9(2): i1–13. ihttps://doi.org/10.3390/plants9020264

Shilpi iJA, iAI iGray idan iV iSeidel. i2010. iChemical iconstituents ifrom iLudwigia iadscendens. iBiochem. iSys. iand iEcol. i38(1): i106–109. ihttps://doi.org/10.1016/j.bse.2009.12.014

Siddique iA idan iB iIsmail. i2013. iRice iecosystem, iallelopathy, iand ienvironment: iA ireview. iThe iAgriculturists. i11(1): i112–121. ihttps://doi.org/10.3329/agric.v11i1.15251

Singla iRK, iV iDhir, iR iMadaan, iD iKumar, iSS iBola, iM iBansal, iS iKumar, iAK iDubey, iS iSingla idan iB iShen. i2022. iThe igenus iAlternanthera: iPhytochemical iand iethnopharmacological iperspectives. iFrontiers iin iPharmacology. i13(April). ihttps://doi.org/10.3389/fphar.2022.769111

Swain iD, iS iParoha, iM iSingh idan iHN iSubudhi. i2012. iEvaluations iof iallelopathic ieffect iof iEchinochloa icolona iweed ion irice i(Oryza isativa iL.). iJ. iof iEnvir. iBiol. i33(5). i881–889.

Timalsina iD idan iHP iDevkota. i2021. iEclipta iprostrata i(L.) i(Asteraceae): iEthnomedicinal iuses, ichemical iconstituents, iand ibiological iactivities. iBiomolecules. i11(11). i1–18. ihttps://doi.org/10.3390/biom11111738

Waghmare iPK, iSA iShinde, iSP iChenalwad idan iAS iJadhav. i2018. iStudy ion iweed icontrol iand iyield iof iseasonal isugarcane ias iinfluenced iby iapplication iof idifferent iherbicides. iInt.J.Curr.Microbiol.App.Sci, iSpecial iIs(6). i930–932.

Wahida iF, iA iHamidi, iF iHaqqi, iI iZainuddin, iAM iIsmail idan iMY iHasan. i2014. iPreliminary istudy ion iallelopathic ieffect ifrom iChromolaena iodorata i(Siam iweed) ileaves iextract itowards iVigna iradiata. iIntl. iJ. iof iEng. iRes. i& iTechn. i3(8): i406–411.

Yuliyani iED, iS iDarmanti idan iED iHastuti. i2019. iAllelochemical ieffects iof iChromolaena iodorata iL. iagainst iphotosynthetic ipigments iand istomata iof iAgeratum iconyzoides iL. ileaves. iJ. iof iPhys.: iConference iSeries, i1217(1). ihttps://doi.org/10.1088/1742-6596/1217/1/012149

Zhou iYX, iHL iXin, iK iRahman, iSJ iWang, iC iPeng idan iH iZhang. i2015. iPortulaca ioleracea iL.: iA ireview iof iphytochemistry iand ipharmacological ieffects. iBioMed iResearch iInternational. i2015. ihttps://doi.org/10.1155/2015/925631

Zohaib iA, iT iTabassum, iSA iAnjum, iT iAbbas idan iU iNazir. i2017. iEfeito ialelopático ide ialgumas iplantas idaninhas ido itrigo iassociadas ina igerminabilidade ie iprodução ide ibiomassa ide iplântulas ido itrigo. iPlanta iDaninha. i35. ihttps://doi.org/10.1590/S0100-83582017350100089

Zohaib iA, iT iAbbas idan iT iTabassum. i2016. iWeeds icause ilosses iin ifield icrops ithrough iallelopathy. iNotulae iScientia iBiologicae. i8(1): i47–56. ihttps://doi.org/10.15835/nsb.8.1.9752

Zohaib iA, iT iTabassum, iT iAbbas idan iT iRasool. i2014. iInfluence iof iwater isoluble iphenolics iof iVicia isativa iL. ion igermination iand iseedling igrowth iof ipulse icrops. iScientia iAgriculturae. i8(3): i148–151. ihttps://doi.org/10.15192/PSCP.SA.2014

Downloads

Published

2023-08-25